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The development of a mesh topology in multi-node electrocardiogram
(ECG) monitoring based on the ZigBee protocol still has limitations. When
more than one active ECG node sends a data stream, there will be incorrect
data or damage due to a failure of synchronization. The incorrect data will
affect signal interpretation. Therefore, a mechanism is needed to correct or
predict the damaged data. In this study, the method of expectation-
maximization (EM) and regression imputation (RI) was proposed to
overcome these problems. Real data from previous studies are the main
modalities used in this study. The ECG signal data that has been predicted is
then compared with the actual ECG data stored in the main controller
memory. Root mean square error (RMSE) is calculated to measure system
performance. The simulation was performed on 13 ECG waves, each of
them has 1000 samples. The simulation results show that the EM method has
a lower predictive error value than the RI method. The average RMSE for
the EM and RI methods is 4.77 and 6.63, respectively. The proposed method
is expected to be used in the case of multi-node ECG monitoring, especially
in the ZigBee application to minimize errors.
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1. INTRODUCTION

Nowadays, there are advanced progress in applying computing technologies [1]-[8], that have
significant progress in artificial intelligence. The development of wireless communication media on the
internet of things application is always followed by the development of protocols to support multiple or
multiuser access. Multiuser monitoring or control applications have been applied in one of them in the health
area. This application allows for centralized, fast, easy, remote, and multiuser health monitoring. Health
parameters that get serious attention are the heart of this refers to the risks posed if not maintained optimally.
Observation of heart conditions can be done by studying the electrical activity of the heart through an
electrocardiogram (ECG) [9]-[11]. Previous research by Hadiyoso and Aulia [12], has succeeded in
designing and implementing an ECG monitoring system for several ZigBee-based user nodes. But in its
application, there are crucial problems, namely damage or loss of data if more than one active node is
sending data streams [13]. This problem is likely to occur because of the failure of synchronization between

the user/end node and the coordinator.

Estimating missing data is a significant advancement that occurs during the data cleaning stage.
Numerous studies have demonstrated that improper data management results in inaccurate analysis [14].

Journal homepage: http://ijece.iaescore.com
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Missing data, as indicated by the absence of data items for a subject, can obscure some potentially significant
information. In practice, missing data has emerged as a significant determinant of data quality. Thus, the
imputation of the missing value is needed [15]. Missing data is a common weakness in the classification
problem, and it can cause the prediction system’s output to be ineffective [16], [17]. Ignoring missing data
has an effect on the analysis’s results [18], [19], the outcomes of learning, as well as the outcomes of
predictions on the collaborative prediction problem [20]. In quantitative studies, missing data leads to biased
parameter estimates [21]-[24]. In the predictive model, the selection of methods for handling incorrect data
missing can affect model performance [22], [25]. Missing data are common in medical research, and if not
handled properly, they can result in a loss of statistical power and potentially biased results [26]-[28]. The
standard data collection problems may involve noiseless data. In addition to the presence of noisy data,
organizations face challenges with the presence of missing data. Missing data will affect extensive data
collection, so investigating different filtering techniques for large data environments will be extraordinary
[29]. This proposed study will not discuss or observe for the cause of the problem, rather than how to
improve or predict the incorrect data with a technique which is commonly used in the case of missing data.
This is the urgency of the research proposed to provide a reliable telemonitoring system with the smallest
possible error rate to avoid misinterpretation.

Several methods have been applied to predict missing data in various applications. In general,
missing value imputation techniques fall into two categories: Statistical and machine learning-based
techniques [30]. Expectation-maximization (EM), linear regression (LR), least squares (LS), and mean/mode
are the four statistical techniques that are most frequently used [31]. The use of EM in the imputation of
missing data has several advantages including missing data does not need to be ignored so that it can increase
information for the accuracy of diagnosis [32] and can handle many patterns of missing data [33]. Imputation
using linear regression results in a small standard deviation [34], although regression imputation is better than
average imputation but results in biased parameter estimates [35]. Expert methods such as support vector
machines (SVM) and artificial neural networks (ANN) used in data prediction were also reported in the study
[36], [37]. However, this method has high computational costs and is complex to be implemented in
computers with low memory resources.

The literature study above provides enough knowledge as a basis for the proposed study. Research
on predictions of missing data using a mathematical approach provides enough evidence to be applied to
solve problems with ZigBee-based multiuser monitoring implementation. In this study, we applied a method
to overcome the incorrect data, they are EM and regression linear imputation. This study aims to predict the
incorrect data and determine the best method between the two proposed methods. Performance analysis is
done by calculating the root mean square error (RMSE) between the reconstruction data and the actual data
stored on the microcontroller memory. As a reminder, the rest of the paper is organized as follows: section 2,
containing an explanation of the data collection and the proposed method for handling missing data. In
section 3, we explain the results and discussion of the simulations that have been carried out. In section 4 we
present the conclusions and implications of this study.

2. MATERIAL AND METHOD
2.1. Data collection

ECG data is sourced from previous studies which are real data from the streaming of each user node.
This multipoint ECG network uses a mesh topology where a coordinator is used to receive data from other
nodes. The coordinator was connected to the personal computer (PC), then the PC displays the ECG chart
according to the active node. ECG data from each node is also stored in memory by the microcontroller to be
used for comparing the performance or comparison in calculating RMSE. Figure 1 is an example of a graph
of an ECG signal that has errors in nodes C and D. At node C, the graph that is marked shows the data value
of 0, this causes the ECG waveform to be distorted. Meanwhile, at node D, the chart marked shows that the
data has risen significantly like a spike (reaching a value of 1024 in decimal). Some of the other point
samples were also omitted manually randomly to test the robustness of the proposed method. This also
causes the ECG waveform to be distorted. These conditions become the main problem when there are errors
in data transmission. This phenomenon is then considered to be a problem of incorrect data.

2.2. Method for handling missing data
2.2.1. Regression imputation (RI)

In the regression model, the observed values are used to calculate missing values. The assumed
value is then used to fill in the blanks where the missing value was previously present. Like mean imputation,
this method has the advantage of selecting more information from which to determine the appropriate
imputation value [38]. A technique known as regression imputation is used to replace missing values with
predictive values that are estimated primarily based on the data that is available. Missing variables have a

Data prediction for cases of incorrect data in multi-node ... (Sugondo Hadiyoso)
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significant impact on which regression imputation technique is used [39]. Imputation regression begins by
calculating the average vector estimation and covariance matrix of data based on sub-matrices that contain
data without missing values [40]. Following that, the observed data is used to calculate linear regression for
missing variables. The values obtained from linear regression are then used to replace missing data.
However, the variance and covariance of data are underestimated using this method [41].

Consider the case of univariate non-response, where Y1; ...; YK-1 are completely observed and YK
are observed for the first r observations but missing for the last n-r observations. Regression imputation is a
method of calculating the regression of a set of variables YK on Y1; ...; YK-1 fills in the missing values
using the r complete cases using the regression predictions [40].

K-1

Pik = Broaz.k-1+ Z EKj-lZ...K—lyij
=1 1)

Where, Byo.12.x—1 IS the intercept and [?Kj.lz___K_l is the coefficient of Yj in the regression of Yk on Y1; ...;
Yk-1 based on the r complete cases.
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Figure 1. Examples of ECG waves that have errors [5]

2.2.2. Expectation-maximization (EM) imputation

The maximum possibility is a mathematical procedure for determining one or more statistical model
parameters for observed data by maximizing the observed probability distribution. The EM algorithm is a
recursive algorithm for determining the maximum probability estimation parameter in the presence of
incomplete data. EM Imputation is a two-step iterative procedure that utilizes the maximum probability
method. We begin by inferring the unobserved values from the expected value (E-step). In the second step,
the expected value is constructed using the maximum of the initial values (M-step). After that, this EM cycle
is repeated until the imputation values satisfy the specified convergence criteria. The EM imputation method
generates an unbiased estimate of the standard parameter [41]-[44].

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 1540-1547
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Specifically, allow to be the most recent estimate of the parameter. It is the E step of the EM
procedure that determines the expected complete-data loglikelihood if were to assume: Specifically, let 8
be the current estimate of the parameterd. The expected complete-data loglikelihood is found in the E step of
EM if Bwere 6(®):

QO16) = [ (OIS s Tape, 0 = )Y -

where, Y,,;s is the missing data and Y, is observed data. The M step in EM establishes 8 **) maximization
of the expected complete-data loglikelihood (observed for all 6:

Q(g(t+1)|9(t)) > Q(ng(t)) for all 9 (3)

2.3. Root mean square error (RMSE)

The root mean square error (RMSE) is one parameter that can be used to determine the accuracy of
continuous variables. In terms of error magnitude, the RMSE is measured. RMSE is defined mathematically
as the square root of the average square difference between the predicted model and the actual value. In other
words, RMSE quantifies the degree of congruence between observed and predicted data. The RMSE equation
as (4):

RMSE =

(4)

where,y; is actual data; J; is prediction data; and n is number of data.

3. RESULTS AND DISCUSSION

Typically, missing data follows discernible patterns. Investigating this pattern is critical for
identifying instances and variables that contribute to the missing data [43], [45]. Figure 2 shows the pattern
of missing data on ECG waves which were observed in this study. It is shown that the missing data pattern
for the ECG dataset is general. To make it easier to understand the missing values patterns that were used for
the analysis variables, the patterns chart has been greatly enlarged to increase its interpretability. Every
pattern (row) corresponds to a bunch of cases with a similar pattern of incomplete and complete data. In other
words, wherever the missing values are located, the patterns or groups of cases are displayed in support
(i.e., on each variable). For instance, pattern 1 denotes cases with no missing values, whereas pattern 4
denotes cases with missing values on the ECG3. It is expected that all missing cells and non-missing cells in
the chart will be contiguous if the data is monotone. The pattern of missing values from the dataset is
non-monotone and there are several values that ought to be imputed. As a result, the monotonicity of this data
is not demonstrated, and the monotone method of imputation is not justified in this situation. Some methods
for dealing with missing data are applicable to any pattern of missing data, whereas other methods are only
applicable to a specific pattern of missing data.

This study simulates the sending of ECG data streams from 4 nodes where each is connected to an
ECG amplifier to record the subject’s ECG waveform. At the same time, data is transmitted to the personal
computer and stored in memory by the controller unit. The application software will display a signal graph
and save the data stream in .txt format to match the data which is stored in memory. In this study, 13 subjects
were involved in recording ECG data through these nodes. ECG data in the decimal format of 1000 samples
from each subject were observed. RMSE calculations are applied to each proposed method. Subjective
performance testing is also done by looking at the ECG wave graph. Table 1 shows the RMSE for each
method used in this research.

Implementation of handling the incorrect data on ECG data using the EM method produces the
smallest RMSE value for most attributes, the average RMSE obtained was 4.77. These results indicate that
the EM method is the best method for handling missing data compared to regression. This can be caused by
the EM algorithm being introduced to handle missing data with several data loss patterns and is a
computationally simple method by offering analytical solutions in M-step [32]. The linear regression method
produces the smallest RMSE value for ECG 4 and ECG 5 because the pattern incorrect in the data tends to be
monotonous, as can be seen in Figure 2.
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Figure 2. The Incorrect data pattern on ECG dataset

Table 1. RMSE for each method

ECG RMSE (EM) RMSE (RI)
ECG1 6.25 6.28
ECG2 3.57 5.75
ECG3 5.74 10.03
ECG4 3.82 3.78
ECG5 8.36 6.73
ECG6 3.58 5.26
ECG7 3.88 7.50
ECG8 151 2.27
ECG9 4.76 6.40

ECG10 6.66 10.73
ECG11 6.95 8.02
ECG12 5.49 11.02
ECG13 1.50 242

Mean 4.77 6.63

Figure 3(a) shows the ECG waves with incorrect data, Figure 3(b) shows the actual ECG waves,
Figure 3(c) shows the predicted ECG waves using EM, and meanwhile, Figure 3(d) shows the predicted ECG
waves using RI. As shown in Figure 3(a), the corrupted data occurs randomly on the observed signal line.
This event occurs on all ECGs, especially when all nodes are active. Visually, the ECG waves that occur
incorrect data are seen to have an impact on the appearance of waves such as spikes. This can result in
reading errors by the application, especially for the heart rate estimation.

Figures 3(c) and 3(d) show an improvement in the ECG waveform through the two proposed
method approaches. Visually, both have a similar waveform compared to the actual ECG wave. This happens
because the value of the prediction error by the two methods is relatively small compared to the actual data.
A comparison sample of prediction results to actual data that is stored in memory is shown in Table 2. The
proposed method in this study is able to correct the error sample point ECG signal by predicting it based on
regression and probalistic approaches. The two proposed methods can be applied to resolve cases of incorrect
data, typically in multi-node ECG monitoring systems that use ZigBee transmission. Based on the
performance test results on the two methods, the EM method offers smaller error predictions compared to the
RI1 method. However, the Rl method has the advantage of simpler computation when applied to computers
with low memory resources.
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Figure 3. ECG waves (a) with incorrect data, (b) actual, (c) predicted-EM, and (d) predicted-Reg. imputation

Table 2. Comparison of actual and predicted data on 5 ECG waves
Data predicted

Actual Data EM (%error) RI1(%error)
ECG-1 260 259(0.3) 269(3.4)
262 273(4.1) 306(16.7)
274 284(3.6) 285(4.01)
ECG-2 274 288(5.1) 258(5.8)
266 285(7.1) 296(11.2)
332 301(9.3) 323(2.7)
ECG-3 273 307(12.4) 363(32)
279 268(3.9) 322(15.4)
296 292(1.3) 393(32.7)
ECG-4 402 413(2.7) 439(9.2)
398 405(1.7) 404(1.5)
418 388(7.1) 397(5.02)
ECG-5 322 338(4.9) 337(4.6)
338 336(0.5) 327(3.2)
315 336 (6.67) 327(3.8)

4. CONCLUSION

This study has succeeded in simulating predictions of the incorrect data in the case of multi-node
ECG telemonitoring based on the ZigBee protocol. Two methods, namely regression imputation and EM are
applied to overcome this problem. Performance measurement is done by calculating the RMSE between the
ECG data predicted with the actual data. EM produces a smaller error compared to regression imputation.
The simulation results show that the EM method has a lower predictive error value than the Rl method with
the average RMSE for the EM and RI methods are 4.77 and 6.63, respectively. However, on ECG 4 and
ECG 5, the Regression Imputation performance has a smaller RMSE value. This phenomenon can be caused
by the pattern of incorrect data that tends to be monotonous. Intuitively, the ECG wave from the two
proposed approaches has a shape like the actual ECG wave. The proposed method in this study is expected to
be applied to predict data in a multi-node monitoring system if incorrect data problems are encountered.
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