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VARIATIONAL MODE DECOMPOSITIONVARIATIONAL MODE DECOMPOSITION
Sugondo Hadiyoso*, Inung Wijayanto, Achmad Rizal, Suci AuliaSugondo Hadiyoso*, Inung Wijayanto, Achmad Rizal, Suci Aulia
Telkom University, Bandung, Indonesia

Electrocardiogram (ECG) based biometric is challenging to be developed with the aim of high-security access. This 
biometric system is more diffi cult to falsify, compared to the conventional biometric systems. From previous proposed 
studies, there is still a gap to improve the accuracy of the system. Therefore in this study, a new protocol is pro-
posed to improve the performance of the ECG biometric system compared to previously reported studies. This study 
decomposes the ECG signals using a method based on empirical mode decomposition (EMD) based, which are 
Variational Mode Decomposition (VMD) and Ensemble Empirical Mode Decomposition (EEMD). These two methods 
are the development of the EMD method to overcome one main problem of EMD. That is, the EMD method gener-
ates oscillations with the same time scales, which stored in different decomposition levels. A private ECG dataset, 
recorded using one lead ECG signal from 11 subjects, is used in this study. ECG signals from each person are then 
segmented into ten windows to become training data and test data. VMD and EEMD methods are used to decom-
pose ECG signals into fi ve sub-signals. Feature extraction based on statistical calculations is applied at each level of 
decomposition to obtain the characteristics of the ECG signal. Mean, variance, skewness, kurtosis, and entropy are 
evaluated as predictors. Support vector machines and 10-fold cross-validation are used to validate the performance 
of the proposed method. Our simulations demonstrate that the proposed method outperforms several previous stud-
ies and achieves an accuracy of up to 98.2%.

Key words: ECG, identifi cation, VMD, EEMD, statistical

INTRODUCTION

Biometrics has been widely used for identifi cation, au-
thentication, or security system applications. The bio-
metric concept consists of psychological and behavioral 
modality. Physical biometric systems such as fi ngerprints 
and iris-based are the most commonly applied. However, 
both of them tend to be easily falsifi ed so that the poten-
tial for misuse [1], for example, for criminal acts. There-
fore, many studies have begun to lead to the search for 
new biometric approaches. One biometric modality that 
has recently received attention is the electrocardiogram 
(ECG) based on biometrics. This is based on the hypoth-
esis that individuals have unique ECG waveforms [2].
Biometric research with ECG modalities has been car-
ried out by previous studies in both simulation and im-
plementation that were tested offl ine or in real-time. The 
study by Biel et al. [3] conducted a biometric simulation 
based on ECG using a 12-lead ECG standard. From 
this study, it is possible to extract features from one lead 
only. Similar research by Vessela [4], simulates 12 leads 
ECG-based biometric. Another study by Jekova [5], sim-
ulates personal identifi cation using the ECG and even 
analyzes the infl uence of the personal health status on 
accuracy. However, the proposed studies use a 12 lead 
ECG system, so it tends to be complex.
Many previous studies propose various methods of fea-
ture extraction, including analysis in the time domain, 

frequency, time-frequency, and wavelet. Wavelet-based 
analysis methods on ECG biometric simulations have 
been proposed in research [6-11]. Another proposed 
method for feature extraction on ECG biometrics appli-
cations is the frequency-based approach. Analysis of the 
frequency domain based on the Fourier transform has 
been conducted in research [12-13]. Other researchers 
propose the time-frequency domain method for feature 
extraction, as reported in [14-15]. Another method based 
on template analysis has been proposed in research 
[16], in its simulations resulting true acceptance rate 
(TAR) <90%. Recently a deep neural network approach 
was proposed in ECG biometric systems as reported in 
the study [17]. However, this requires large memory re-
sources to process the data that it might be diffi cult if 
implemented on low-cost computers.
Each of the proposed studies achieves high accuracy. 
This can strengthen the hypothesis that ECG has the 
opportunity to become a biometric modality in the future. 
Although studies show good performance, it cannot be 
compared to one another, because there are differences 
in the number of ECG leads, ECG datasets, and devices 
used. At least the results of this research have strength-
ened one study to another. Furthermore, the proposed 
methods can be used as a reference in the development 
of ECG-based in the near future. 
In previous studies, sample entropy (SampEn) and Hjorth 
descriptors were proposed for the feature extraction 
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Figure 1: Raw ECG signal from one of subjects

Figure 2: Proposed method for ECG biometric system

method in ECG-based biometric [18]. The accuracy re-
sult was 93.8%. Another study measured the entropy on 
wavelet decomposition signals. The accuracy result was 
71.8% [19]. The empirical mode decomposition (EMD) 
method with statistical measurements has also been 
proposed in previous studies [20]. The accuracy result 
was 93.6%, not outperform compared with study [18]. 
From the previous proposed studies, there is still a gap 
and also opportunities to improve accuracy. Since the 
EMD method has a drawback which generates data at 
the same time scale but is stored at a different level of 
decomposition.
This study proposes an ECG biometric method using 
Ensemble Empirical Mode Decomposition (EEMD) and 
Variational Mode Decomposition (VMD) combined with 
statistical analysis. This study aims to improve the per-
formance of our previous studies in [18-20]. The ECG 
signals are decomposed into fi ve levels using EEMD and 
VMD. Statistical analysis is used to get the character-
istics of each decomposed signal. The proposed meth-
od in this research is tested and evaluated on a private 
dataset with a higher number of subjects, consisting of 
11 subjects. Each subject has 10 ECG signals. Thus 
110 ECG signals are simulated to become the training 
and test data. The validation and performance tests are 
carried out using Support Vector Machine (SVM) and 
10-fold cross-validation. Some SVM kernels have been 
used with the aim of fi nding the best performance. These 
simulations show that the proposed method outperforms 
several previous studies and achieves 98.2% of maxi-
mum accuracy using linear and quadratic SVM.
The remaining section of the paper is organized as fol-
lows: Section 2 explains the data collection and proposed 
method, including feature extraction and classifi cation. 
Section 3 describes the results and analysis of the study, 
followed by a discussion. Meanwhile, the conclusions of 
this study presented in section 4. 

MATERIALS AND METHODS

Data collection

ECG signals are recorded using a one-lead digital ECG 
device that we have developed [21]. This study used the 
same dataset with our previous research in [19], [20], 
which consists of 11 subjects. ECG signal leads refer 
to the Einthoven triangle tapping technique. This digital 
ECG has a resolution of 10 bits with a sampling frequen-
cy of 100 Hz. A sampling frequency of 100 Hz is a recom-
mendation in the study of [22] for heart rate analysis. At 
the time of recording, the subject is relaxed and sat on a 
chair. The total recording duration of each person is one 

minute The ECG signal data stream is then stored in .txt 
format to be analyzed and simulated. Figure 1 shows an 
example of a raw ECG signal from one of the subjects.
This section describes the proposed method for the ECG 
biometric system. Figure 2 shows the general process 
of the proposed method. In the pre-processing stage, 
the raw ECG signal is fi ltered to reject a large amount 
of noise. EEMD and VMD then decompose Noise-free 
signals into fi ve levels. The next process is feature ex-
traction by calculating statistical parameters for each 
decomposed signal. The performance of the proposed 
method is tested using SVM and cross-validation. The 
success parameter of this research is the value of the 
accuracy of the system in person identifying. 

Signal pre-processing

Pre-processing is intended to reject low and high-fre-
quency noise in the form of baseline wandering and 
muscle noise. In this process, signal normalization also 
carried out to avoid large deviations that may reduce 
system performance. Pre-processing is carried out by a 
high pass fi lter (HPF) with a cut-off frequency of 0.5 Hz 
and a low pass fi lter (LPF) with a cut-off frequency of 
50 Hz [23]. The pre-processed signal, which is noise-
free, is shown in Figure 3. 

Signal decomposition

Signal decomposition aims to obtain essential informa-
tion from the observed signal so that the characteristics 
of the ECG signal from each person can be calculated 
in more detail. The most common approaches for signal 
decomposition are the time domain and time-frequency 
domain.One of the popular time domain based decom-
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Where
     = original signal

  = white noise
    = signal with white noise according to the 

                ensemble number (N).

(1) (4)

(2)

(3)

Figure 3: Pre-processed signal

position methods is EMD. Meanwhile the time-frequency 
domain based method is wavelet transform [24]. In this 
study, two signal decomposition methods, namely EEMD 
and VMD, have been simulated. The signal decomposi-
tion analyzes IMF-1 to IMF-5. The resulting decomposi-
tion can be up to IMF-7 for each observed ECG wave-
form, but at that level, the decomposition results tend to 
be monotonous. Following is a description of the EEMD 
and VMD methods.

Ensemble Empirical Mode Decomposition (EEMD)

EEMD is the development of empirical mode decomposi-
tion (EMD), which was fi rst introduced by Hilbert Huang 
in 1998 [25]. EEMD is claimed to be able to overcome 
the weaknesses of EMD [26]. The weakness of EMD is 
that oscillations with the same time scale are stored in 
different decomposition levels or vice versa [27]. This 
condition is ineffective, and the intrinsic information sig-
nals become more diffi cult to determine. The report then 
becomes our reason for optimizing our previous study 
[20], which used the EMD method. EEMD has the abil-
ity to scale better. This has been proven through trials 
with the addition of white noise to the signal [28]. Each 
decomposition produced by the EEMD does not show a 
relationship between one another. EEMD is able to com-
pensate for noise better because one of the parameters 
calculated is noise amplitude (A). EEMD can be applied 
according to the following algorithm:
1. Add white noise to the original signal according to 

the following equation.

2. Signal decomposition of Yn(t) into several IMF with 
the residue.

3. Repeating the fi rst and second steps using different 
white noise added to the original signal.

4. Calculate the average  of severalensembles 
(N) using the following equation. 

Variational Mode Decomposition (VMD)

Variational mode decomposition (VMD) is a decomposi-
tion method of non-stationary signals. It decomposes the 
signal into several components that are entirely intrinsic 
and non-recursive [29]. VMD is developed to overcome 
EMD defi ciencies, including backward error correction, 
noise sensitivity, and the selection of predefi ned fi l-
ter bank boundaries. The VMD method adaptively cal-
culates related bands and overcomes the presence of 
noise so that it can decompose the input signal more 
effi ciently. The VMD method has become a popular tool, 
one of which is in biomedical signal processing. In a sim-
ple defi nition, VMD decomposes the original signal into 
a band-limited ensemble mode [30]. To assess the band-
width of one-dimensional signal s with a mode uk can be 
done by following these steps:
• Compute the analytic signal associating with uk to 

obtain a unilateral frequency spectrum by using Hil-
bert transform,

• The frequency spectrum of the mode is shifted to 
baseband. This process is done by mixing the expo-
nential to the respective estimated center frequency,

• Calculate the bandwidth using H1 Gaussian smooth-
ness of the demodulated signal.

The constrained variational problem of VMD is defi ned 
as [29]:

M−1 is the total amount of IMF decomposed from, 
is the mth level/mode and rM

(n) is the remainder ob-
tained in the nth experiment.

Here, ƒ is the input signal, uk is the subcomponent’s 
discrete numbers or the modes which, during the repro-
ducing the input, have specifi c sparsity properties. The 
sub-signals are compact around the center pulsation and 
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(5)

(6)

said as a band-limited intrinsic mode function (BLIMF). 
The expected number of BLIMF is defi ned as K while the 
center frequencies of BLIMF and short-hand notations 
are expressed with uk and  ωk. 
The results of decomposition both from EEMD and VMD 
are then analyzed statically as a signal feature set. The 
statistical parameters are mean, variance, skewness, 
kurtosis, and entropy. The defi nition of these fi ve param-
eters is explained in the previous study [20]. 

Support Vector Machine (SVM)

Support Vector Machine (SVM) is a discriminative classi-
fi er developed by Cortes and Vapnik in 1995 [31]. Basi-
cally, SVM is used for solving a two-classes classifi cation 
task [32]. The main concept of SVM is by mapping the in-
put vector into a very high dimension feature space. The 
next process is by creating an imaginary plane which 
called as hyperplane. This hyperplane then used to sep-
arate the data into two groups. SVM is an effective tool 
for classifi cation problems and pattern recognition. It is 
very applicable in many fi elds, including image process-
ing [33], [34], bio-signal analysis such as electrocardio-
gram [35], [36] and electroencephalogram [37-39]. Two 
types of SVM are used in this study. 
1. Linear Support Vector Machine (SVM)
To optimize the distance between the nearest data and 
the hyperplane, an optimization algorithm is needed. For 
a group of data X such as expressed in Equation 5.

Here, the value of bi is -1 or 1. The number of training 
data is denoted with n. Therefore, for every , the hy-
perplane can be expressed in Equation 6.

(8)

(7)

Here, the vector to the hyperplane is denoted as . If 
the data can be separated linearly, the hyperplane is ex-
pressed in Equation 7 and Equation 8.

IMF

Mean Variance Skewness Kurtosis Entropy

p-value
IMF-1 0.000* 0.030* 0.108 0.003* 0.003*

IMF-2 0.005* 0.059 0.002* 0.000* 0.007*

IMF-3 0.043* 0.075 0.146 0.173 0.175

IMF-4 0.008* 0.007* 0.065 0.002* 0.000*

IMF-5 0.088 0.056 0.053 0.002* 0.051
* indicates p <0.05

Table 1: Validation results of the proposed method

(9)

On the other hand, if the data cannot be separated lin-
early, then the calculation of the hyperplane is needed to 
be adjusted by using Equation 9.

Here, the T is the trade-off parameter between the error 
of the training set and the separation of the classes. The 
ε is the set of slack variables. The main purpose is to fi nd 
the minimum distance between two hyperplanes  
by minimizing the .
2. Nonlinear Support Vector Machine (SVM)
Another approach for the SVM classifi er is by using a 
kernel trick to extend to a non-linear surface, such as 
proposed by Boser et al. [40]. The original space data 
can be shifted to the higher dimensional space by using 
non-linear functions. They are polynomial and Gaussian 
function (radial basis function). This study used the poly-
nomial functions, which consist of the quadratic and cu-
bic functions. The function is expressed in Equation 10.
Here, for quadratic function the d=2, and for cubic func-
tion, the d=3. 

(10)

RESULTS AND DISCUSSION

Figure 4 and Figure 5 shows an example of the decom-
position results (IMF-1 to IMF-5) in two different subjects. 
Visually there is a difference in each of the decomposition 
signals between the two subjects, which are observed. 
The EEMD and VMD results show that there are differ-
ences in signal form between the two subjects. Statistical 
features are then calculated in all decomposition signals 
producing 25 feature vectors. Figure 6 shows the aver-
age value of each statistical parameter of each subject. 
Signifi cance differences test in each feature for each IMF 
was also observed using one-way ANOVA. Differences 
between individual ECGs are considered to have statis-
tical signifi cance if the p-value <0.05. The results of the 
signifi cance tests are presented in Table 1. Each IMF has 
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(a)

(b)

Figure 4: Decomposition signals using EEMD (a) subject-1 (b) subject-2

features with signifi cant differences, especially in IMF-1, 
IMF-2, and IMF-4, signifi cant differences in almost all 
features.In IMF-5, signifi cant differences are only found 
in one feature. This can occur because a high-level IMF 

will generate relatively monotonous signals [41]. Since 
not all features have signifi cant differences, in the vali-
dation process, all features are used as predictors, with 
expectations it can produce high accuracy. 
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Figure 5: Decomposition signals using VMD (a) subject-1 (b) subject-2

(a)

(b)

The average value of each feature shown in Figure 6 
represents that the subject's ECG signals have different 
characteristics from each other. As the results of the sig-
nifi cance tests, which are shown in Table 1, visually in 

Figure 6 shows that parameters such as mean, variance, 
skewness, and entropy have adjacent values. This might 
be considered in the feature selection strategy in order to 
get effi ciency in the use of the number of features.
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(a) (b)

(c) (d)

(e)

Figure 6: The average value of features (a) mean (b) variance (c) skewness (d) kurtosis 
(e) entropy of each IMF of decomposition (EEMD)
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Classifi er
Accuracy (%)

EEMD VMD

Linear SVM 98.2 98.2

Quadratic SVM     98.2 98.2

Cubic SVM 96.4 97.3

Table 2: Validation results of the proposed method

Figure 7: Pattern distribution of features for each subject

Predicted Subject (Sn) Acc 
(%)S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

S1 9      1   90

S2  10       100

S3   9 1      90

S4    10      100

S5     10     100

S6      10    100

S7       10   100

S8       10  100

S9  10   100

S10   10  100

S11   10 100

TR
U

E

Table 3: Confusion Matrix for highest accuracy in both EEMD and VMD methods

Reference Number of subjects Number of Dataset Method Accuracy (%)
[18] 10 65 Samp En and Hjorth Descriptor 93.8
[19] 11 110 DWT and Entropy 71.8
[20] 11 110 EMD and Statistic 93.6

Proposed method 11 110 EEMD, VMD and Statistic 98.2

Table 4: Comparison of proposed methods with previous studies

The next stage is the validation of the proposed method. 
10-fold cross-validation and SVM are used to validate 
the performance of the proposed method. Linear, qua-
dratic, and cubic SVM are simulated to observe which 
kernels are capable of producing the highest accuracy 
and also generalize the performance of the proposed 
method. In this study, feature selection is not performed 
so that all attributes are used as predictors. The results 
of each simulation are shown in Table 2. 

Table 2 shows the highest accuracy was 98.2%, both of 
EEMD and VMD. The highest accuracy is achieved by 
linear and quadratic SVM. In this case, the linear and 
quadratic kernels are able to produce higher accuracy 
than cubic kernels, about 0.9% to 1.8%. Refers to the 
feature distribution pattern, which is shown in Figure 7, 
linear or quadratic separation lines are the best bound-
ary lines and also consider the effi ciency of calculations 
compared to cubic kernel.
Table 3 confi rms the results of the validation test in the 
confusion matrix format. It shows that the proposed 

methods are competitive due to the accuracy achieved 
and also give the same misidentifi cation in subject-1 and 
subject-3. This study outperforms some previous stud-
ies [18-20]. A summary of each study is shown in Ta-
ble 4. We specifi cally highlight the study [20], in which 
the method of signal decomposition and statistical fea-
ture extraction was also applied. We can conclude that 
EEMD and VMD have better performance compared to 
empirical mode decomposition as used in studies [20]. 
Theoretically, EEMD and VMD are able to decompose 
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the signal where each IMF of decomposition does not 
have a relationship with each other. This made the char-
acteristics of the signal more specifi c. Therefore, this 
proposed method achieves better accuracy. Further-
more, it was confi rmed in a study by Maji and Pal [42], 
that in certain cases, the VMD method produces better 
performance than EMD. 

CONCLUSIONS

A personal identifi cation using the new biometric ap-
proach based on single-lead ECG signals is proposed. 
This study is an improvement from previous research in 
order to get higher accuracy. In addition, this study used 
a larger population. A total of 110 ECG signals are tak-
en from 11 participants were simulated in this study. The 
multilevel signal decomposition method, combined with 
the statistical calculation, is used for feature extraction. 
In the feature extraction stage, Ensemble Empirical 
Mode Decomposition (EEMD) and Variational Mode De-
composition (VMD) decompose the signal into fi ve lev-
els. Mean, variance, skewness, kurtosis, and entropy are 
calculated at each level of decomposition signal, which 
then becomes a set of features. Validation of proposed 
methods is done by 10-fold cross-validation and SVM. 
Linear, quadratic, and cubic kernels were tested to fi nd 
out the best performance. This research shows that the 
performance of EEMD and VMD is equally good, where 
both methods reach 98.2% accuracy.  The results of this 
study generated an increase in accuracy of 4.4% com-
pared to previous studies, which resulted in an accura-
cy of 93.8% in the same dataset. The increased accu-
racy also proves the hypothesis that ECG signals have 
unique characteristics among persons. In addition, the 
simulation provides evidence that EEMD and VMD have 
better performance than EMD. The same oscillation sig-
nal is not generated in different decomposition levels. It 
is very important to avoid bias in the feature extraction 
stage so that it impacts the detection accuracy. Howev-
er, the biometric system that proposed in this study still 
has drawback including simulations carried out in small 
populations, offl ine simulation and have not tested the 
true acceptance rate and false acceptance rate. Thus, it 
remains a challenge for this new biometric approach can 
be applied in a real-world implementation. 
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