
 



Editor-in-Chief 
 
Prof. Eric M. Lui , 
Meredith Professor, Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 
13244-1240, USA, United States 
 
Editorial Board 
 
Professor Cristiano Fragassa, Department of Industrial Engineering University of Bologna, Italy 
 
Prof. Dr. Abdelhalim Zekry, Ain Shams University, Egypt 
 
Dr Mahdi Esmaeilzadeh, Scientific research publishing house,Mashhad,Iran, Iran, Islamic Republic of 
 
Dr Thriveni Tene, VTU, India 
 
Prof Elio Chiodo, Università degli Studi di Napoli Federico II, Italy 
 
Dr Ruksar Fatima, KBN College of Engineering, India 
 
Dr Poorani Shivkumar, Professoe-EEE Karpagam Academy of Higher Education, Coimbatore, India 
 
Dr MASSIMILIANO PEPE, University of Naples "Parthenope" (Italy), Italy 
 
Dr. Miron Cristea, Politechnica University of Bucharest, Romania 
 
Dr. Chen Hung-Ming , National Chiao Tung University, 1001 Ta Hsueh Rd. Hsinchu, Taiwan 300, ROC 
 
Anca Daniela Ionita , University Politehnica of Bucharest, Romania 
 
Dr. Radu Rădescu, University POLITEHNICA of Bucharest, Romania 
 
Daniela Saru, University "Politehnica" of Bucharest, Romania 
 
Dr Abdul Shaban, Functional Interfaces Group Institute of Materials and Environmental Chemistry, Research 
Center for Natural Sciences, Hungarian Academy of Sciences, Hungary 
 
Dr. Anjan Kumar Kundu, Institute of Radiophysics and Electronics University of Calcutta Kolkata, India 
 
Dr. Disala Nilanthaka Uduwawala, Senior Lecturer Dept. of Electrical and Electronic Engineering University of 
Peradeniya, Sri Lanka 
 
Dr. Lilantha Samaranayake, University of Peradeniya, Sri Lanka 
 
Ms. Ioana Raluca Edu, Fachhochschule Jena, Germany 
 
Dr. Cristian Florian Dinca, University POLITEHNICA of Bucharest, Romania 
 
Dr. Bogdan Belean, National Institute for Research and Development of Isotopic and Molecular Technologies, 
Romania 



Dr. Nicolae Crisan, Technical University of Cluj-Napoca, Romania 
 
Mr. Tabara Octavian Adrian, University Politehnica of Bucharest, Romania 
 
Prof.Dr.Md. Osman Goni, Khulna University of Engineering and Technology, Bangladesh 
 
Dr Fabio Mottola, University of Naples Federico II Department of Electrical Engineering and Information 
technology, Italy 
 
Adebowale Shadare, Prairie View A&M University, United States 
 
Dr Roozbeh Abedini Nassab, Mechanical Engineering and Materials Science Department, Duke University, 
United States 
 
Dr Sunil Patil, ANSYS Inc., United States 
 
Prof Ahmad Mujahid Ahmad Zaidi, Faculty of Engineering, National Defense University of Malaysia, Malaysia 
 
Prof. M. Dev Anand, Professor and Deputy Director Academic Affairs, India 
 
Prof Jawad K. Ali, Microwave Research Group, Department of Electrical Engineering, University of 
Technology, Iraq 
 
Dr. Eng. Liliana Marilena MATICA, University of Oradea, Romania 
 
Ivan Protsenko, Sumy State University, Ukraine 
 
Dr. Muhammad Anisuzzaman Talukder, University of Maryland, Baltimore County, Baltimore, MD 21250, 
USA, Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and 
Technology, Dhaka 1000, Bangladesh 
 
Prof. Lorand Szabo, Technical University of Cluj-Napoca, Romania 
 
Mr. Spehro Pefhany, Trexon Inc., Canada 
 
Jean-Bernard Fullenwarth, Alcatel-Lucent / Accenture, France 
 
Prof.Dr. Chiu Huang-Jen, National Taiwan University of Science and Technology 
 
Prof Valentina Emilia Balas Aurel Vlaicu University of Arad, Romania, Romania 
 
Khaled Bataineh, Jordan University of Science and Technology, Jordan 
Angelo Algieri, University of Calabria, Italy 
 
Yi-Chan Chung, The Department and the Graduate Institute of Business Administration, Yuanpei University, 
Taiwan 
 
Dr. Raja Rizwan Hussain, 
King Saud University, Saudi Arabia 
 



 
Copyright © 2019 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Engineering & Technology, 8 (1.9) (2019) 17-22 
 

International Journal of Engineering & Technology 
 

Website: www.sciencepubco.com/index.php/IJET  
 

Research paper 
 

 

 

 

Link Redundancy for High Availability Network based on  

OpenFlow Software Defined Network 
 

Indrarini Dyah Irawati1*, Sugondo Hadiyoso1, Yuli Sun Hariyani 1 

 
1School of Applied Science, Telkom University, Bandung, Indonesia 40257, Indonesia 

*Corresponding author E-mail: indrarini@telkomuniversity.ac.id 

 

 

Abstract 
 

Nowadays, Internet traffic is growing rapidly, as a result needed a realible network connectivity. The problem arise when the network is 

damage, i.e., link failure, server failure. It is important to create high availability network. This paper proposed link redundancy for high 

availability network based on OpenFlow Software Defined Network (SDN). OpenFlow supports port grouping for handling fast-failure 

while link broken. In this paper, we use cascade topology that consists 2-layer with 5 switches and emulate it using tools mininet and 

Ryu controller. The results for all scenario show that fast-failure method can detect link failure and recover without terminate the connec-

tion. 

 
Keywords: Software Define Network, High Availibility Network, Link Failure, OpenFlow 

1. Introduction 

The growth of Internet network users being rapidly lead to a surge of network traffic. It will cause a decrease in network performance 

that will be felt on the user. 

Therefore, the required settings dynamic network resources to improve network performance and lower latency. In this study designed a 

high availability network (HA network) based on OpenFlow that is dynamic and flexible according to the needs. 

In the previous research, the simulation of Spanning Tree Protocol (STP) based on Software Defined Network using mininet emulator 

have been done (Irawati et al., 2015). The result shows that the network can handle a link failure using STP because it provides backup 

links between switches. STP also stops for flooding and avoids broadcast storm on the network. However, it takes about 60s to change 

the status of port when a link failure occurs until the backup link works well. Therefore, in this study, we design link redudancy for HA 

network based on openflow fast-failover group on Software Defined Network.   

2. Research Methodology 

2.1. OpenFlow Group Table 

There are three tables that are defined by the OpenFlow in the logical architecture OpenFlow Switch, the Flow Table, Group Table and 

Meter Table. Open flow group table is part of the open flow consisting of group entries. Group table is an additional method of forward-

ing scheme. Group tables were implemented in 1.1 OpenFlow is used to do more complex process/algorithm on packets that can’t be 

defined within a flow itself (Open Networking Foundation. 2013.). 

In OpenFlow, groups are action for flooding and forwarding semantics which more complex. The examples of group actions are multi-

path, fast reroute, and link aggregation. Groups enable to carry multiple functions entries on a single identifier (ie. IP forwarding to the 

common next hop). Hence, it make more efficient actions. (Open Networking Foundation. 2013.). 

The groups table contains lists of actions capability, and each action list is depends on the OpenFlow bucket. The list can put into the 

packets entering. The appropriate behavior depends on the kind of group. There are several kind of groups that apply OpenFlow addi-

tional parameters that will be explained in detail on each type of OpenFlow groups (Izard, 2016). 

  

 

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET
../indrarini@telkomuniversity.ac.id


18 International Journal of Engineering & Technology 

 

 
Fig 1: The main components of group entries in group table (Izard. 2016). 

 

Each group entry (see Figure 1) is identified by its group identifier and contains: 

• ID the unique code (32 bit length) 

• Type to define group semantics  

• Counters status updated as packets are worked on group 

• Buckets an ordered list of action buckets, where each action bucket hold a group of instructions to process and associated parameters. 

(Open Networking Foundation. 2013.) 

2.2. The Fast-Failover Group 

The Fast-Failover (FF) group is a set of buckets, where the buckets have a special parameter (watch port and / or watch group). In Figure 

2, it represents of the group that will be installed in s1 and s3. The watch port monitor the status of the group, whether in up or down 

position. The down status indicates that the bucket can’t work. Then, if the group status is up, the bucket can work. There is only one 

bucket can work at a time. 

In fact, there is no time guarantee of transition to replace a new bucket when a failure happened. The transition time is depend on search 

time to find a group that is up and on the switch implementation. However, the motivation behind using a Fast-Failover group is that it is 

almost guaranteed to be faster than consulting the control plane to handle the port down event and inserting a new flow or set of flows. 

With Fast-Failover groups, link failure detection and recovery takes place entirely in the data plane. (Izard, 2016). 

 
(a) FF group on s1                                             (b) FF group on s2 

Fig 2: Fast-Failover (FF) group. Note the correlation between the watch port and output port within each bucket. (Izard, 2016). 

3. Scenario 

We use mininet emulator version 2.3.0d1 that installed on Ubuntu 16.04 based on x64 bit Operating System and run the cascade network 

topology using Open vSwitch and OpenFlow version 1.3. 

3.1. Network Design 

In Figure 3 shows network design. The network is designed using cascade topology that consists 2-layer as a backbone. The first layer 

has 2 switches (S2, S4) and the second layer has 3 switches (S1, S3, S5). There are 2 hosts as a client (H1) and a server (H2), and 3 types 

of link. The main link is the primary link that used to transmit data packets between switches. The backup link is a link redundancy that 



International Journal of Engineering & Technology 19 

 
works when the primary link is damaged. Whereas the control link is a connecting link between the switch to the controller. The control-

ler uses Ryu software that support openflow v1.3. 

 

 
 

Fig 3: Network Design 

3.2. Flow Table Mechanism 

Ryu controller distributes flow table entry and group table entry to all switches according to the scenario, hence H1 and H2 can com-

municate each other, avoid broadcast storm and support link failure detection. 

 

 

 
Fig 4: Flow table 

 

Figure 4 show S1 flow table. When packet in received from port 1, then switch will forward the packet to group id. Group table schema 

can be seen in figure 2. The group using bucket to identify watch_port and output according destined port. And, if the packet received 

from port 2 or 3, the packet will forward via port 1. Flow table entry for each switch can be seen in Table 1. While FF group table for 

each switch can be seen di Table 2. 

 
Table 1: flow table entry each switch 

Switch Input Output 

S1 Port:1 Group:1111 

 Port:2,3 Port:1 

S2 Port:1 Group:2211 

 Port:2,3 Port:1 

S3 Port:1 Port:2 

 Port:2 Port:1 

S4 Port:1,2 Port:3 

 Port:3 Group:4422 

S5 Port:2,3 Port:1 

 Port:1 Group:5522 

 
Table 2: Fast-Failover group table each switch 

Switch Group_id Bucket 

Watch_port Output 

S1 1111 Port:2 Port:2 

  Port:3 Port:3 

S2 2211 Port:2 Port:2 

  Port:3 Port:3 

S4 4422 Port:1 Port:1 

  Port:2 Port:2 

S5 5522 Port:2 Port:2 

Group_id:111

1 

S1 
In_port:1 



20 International Journal of Engineering & Technology 

 
  Port:3 Port:3 

3.3. Performance Evaluation 

We use 2 scenarios for evaluating the performance of link redudancy (see in Figure 5). The first scenario is breaking the link between S1 

and S2. The second scenario is breaking the link between S2 and S5. The connectivity test is performed by sending Packet Internet 

Grouper (PING) from H1 to H2. We use wireshark to measure recovery time and throughput while the link broken. 

 

 
Fig 5: Link down scenarios 

3.4. Link down evaluation 

Link down evaluation can be done using Packet Internet Grouper (PING) to check the connectivity between H1 and H2. While PING is 

running, the link will be disconnected. The observation were made on the network. In figure 6, shown the respon from controller when 

S1 to S2 down. 

 

 
Fig 6 Controller response for link S1 to S2 down 

 

 
Fig 7 PING from H1 to H2 



International Journal of Engineering & Technology 21 

 
We simulate link disconnection at icmp_seq=196. In Figure 7 shows that the end-to-end communication between H1 and H2 still con-

nected. In table 3 shown the impact of link down on the network. 

 
Table 3: link down evaluation in HA network 

Skenario Source Destination Link Status 

S1 S2 S3 S4 S5 

1 H1 H2 X X O O O Connected 

 H2 H1 X X O O O 

2 H1 H2 O X O O X Connected 

 H2 H1 O X O O X 

3.5. Throughput evaluation 

We use Iperf for measuring the throughput between H1 as a client and H2 as a server using UDP packet with 1GB load in 60 second. In 

Figure 8, shown when the interupption of the link, the throughput decrease for some times, but the connection still persist. The result of 

average throughput measurement are 685.96 Mbit/sec in scenario 1 (Figure (a)) and 612.88 Mbps/sec in scenario 2 (Figure (b)). 

 

 
(a)1st Scenario                                      (b) 2nd Scenario 

Fig 8 Throughput graph 
 

 
Fig 9: S1-S2 normal 

 

 
Fig 10: S1-S2 down 

 



22 International Journal of Engineering & Technology 

 

 
Fig 11: S2-S5 normal 

 

 
Fig 12: S2-S5 down 

4. Discussion and Conclusion 

We conclude our research that the OpenFlow Fast-Failover group table can handle link failure so that the High Availability Network can 

be realized. Fast-Failover method can detect link failure and recover the link without the occurrence of termination. When link is broken, 

network performance is still maintained, that the average throughput measurement is about 685.96 Mbit/sec in scenario 1 and 612.88 

Mbps/sec in scenario 2. 

Acknowledgement 

This work was supported and funded by KemenRistekDIKTI under Hibah Bersaing research grant. 

References  

[1] Braun, Wolfgang & Michael Menth. (2014). Softward-Defined Networking Using OpenFlow: Protocols, Applications and Architectural Design 

Choice, Germany: Future Internet 2014, 6 

[2] Hariyani. Yuli Sun., Indrarini Dyah Irawati, Danu Dwi S. & Mohammad Nuruzzamanirridha. (2015). Routing Implementation Based-on Software 

Defined Network using Ryu Controller and OpenvSwitch. Jurnal Teknologi 78:5, 295-298 

[3] Izard, Ryan. (2016). How to Work with Fast-Failover OpenFlow Groups. [Online].Available: https://floodlight.atlassian.net/ 

[4] Irawati, Indrarini Dyah & M. Nuruzamaniridha. (2015). “Spanning Tree Protocol Simulation Based on Software Defined Network Using Mininet 
Emulator” ICSIIT, 395-403. 

[5] Li, Cheng. Multipath and QoS Application on RYU [Online]. Available: http://www.muzixing.com/pages/2014/11/07/multipath-and-qos-

application-on-ryu.html 
[6] Adrichem, Niels L. M. van, Benjamin J. van Asten & Fernando A. Kuipers (2014). Fast Recovery in Software-Defined Networks. IEEE Computer 

Society, 61-66 

[7] Open Network Foundation (2012). OpenFlow Switch Specification Version 1.3.0 (Wire Protocol 0x04). ONF TS-006 [Online]. Available: 
https://www.opennetworking.org 

[8] Open Networking Foundation. (2013). OpenFlow Switch Specification Version 1.4.0. [Online]. Available: http://www.opennetworking.org  

[9] Patel, Gunjan, Athreya, Adithi S., Erukulla, Swetha. (2013). OpenFlow Based Dynamic Load Balanced Switching. COEN233, Project Report. 
[10] Ryu Project Team. Ryu SDN Framework. [Online]. Available: http://osrg.github.io/ryu-book/en/Ryubook.pdf 

[11] Catro, Flavio. (2014). Shortest Path forwarding with Openflow on RYU. [Online]. Available: https://sdn-lab.com/2014/12/25/shortest-path-

forwarding-with-openflow-on-ryu/ 
[12] Scott, Leo. (2015). Subscribing to Port Events. [Online]. Available: http://ofdpa.com/2015/06/10/subscribing-to-port-events/ 

[13] Yamahata, Isaku. (2013) Ryu: SDN framework and Python experience, Japan: Pycon APAC 2013, September 14 


